3.140 \(\int \frac{\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=174 \[ \frac{35 \sin (c+d x)}{16 a^2 d \sqrt{a \sec (c+d x)+a}}-\frac{5 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{5/2} d}+\frac{115 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{15 \sin (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac{\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

(-5*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(5/2)*d) + (115*ArcTan[(Sqrt[a]*Tan[c + d*x])/
(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - Sin[c + d*x]/(4*d*(a + a*Sec[c + d*x])^(5/2)) -
(15*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + (35*Sin[c + d*x])/(16*a^2*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.371567, antiderivative size = 174, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {3817, 4020, 4022, 3920, 3774, 203, 3795} \[ \frac{35 \sin (c+d x)}{16 a^2 d \sqrt{a \sec (c+d x)+a}}-\frac{5 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{5/2} d}+\frac{115 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{15 \sin (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac{\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-5*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(5/2)*d) + (115*ArcTan[(Sqrt[a]*Tan[c + d*x])/
(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - Sin[c + d*x]/(4*d*(a + a*Sec[c + d*x])^(5/2)) -
(15*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + (35*Sin[c + d*x])/(16*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 3817

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[
e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*(2*m + 1)), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc
[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d
, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4020

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(b*f*(2
*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*(2
*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*
b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac{\sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{\int \frac{\cos (c+d x) \left (-5 a+\frac{5}{2} a \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{15 \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac{\int \frac{\cos (c+d x) \left (-\frac{35 a^2}{2}+\frac{45}{4} a^2 \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{15 \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{35 \sin (c+d x)}{16 a^2 d \sqrt{a+a \sec (c+d x)}}-\frac{\int \frac{20 a^3-\frac{35}{4} a^3 \sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{8 a^5}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{15 \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{35 \sin (c+d x)}{16 a^2 d \sqrt{a+a \sec (c+d x)}}-\frac{5 \int \sqrt{a+a \sec (c+d x)} \, dx}{2 a^3}+\frac{115 \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{15 \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{35 \sin (c+d x)}{16 a^2 d \sqrt{a+a \sec (c+d x)}}+\frac{5 \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^2 d}-\frac{115 \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac{5 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^{5/2} d}+\frac{115 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{\sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{15 \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{35 \sin (c+d x)}{16 a^2 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.7662, size = 169, normalized size = 0.97 \[ \frac{\sqrt{1-\sec (c+d x)} (16 \sin (c+d x)+5 \tan (c+d x) (7 \sec (c+d x)+11))-80 \tan (c+d x) (\sec (c+d x)+1)^2 \tanh ^{-1}\left (\sqrt{1-\sec (c+d x)}\right )+460 \sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right ) \cos ^5\left (\frac{1}{2} (c+d x)\right ) \sec ^3(c+d x) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )}{16 d \sqrt{1-\sec (c+d x)} (a (\sec (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(460*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^5*Sec[c + d*x]^3*Sin[(c + d*x)/2] - 80*A
rcTanh[Sqrt[1 - Sec[c + d*x]]]*(1 + Sec[c + d*x])^2*Tan[c + d*x] + Sqrt[1 - Sec[c + d*x]]*(16*Sin[c + d*x] + 5
*(11 + 7*Sec[c + d*x])*Tan[c + d*x]))/(16*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.202, size = 552, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/32/d/a^3*(-1+cos(d*x+c))^2*(80*2^(1/2)*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)
*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+160*sin(d*x+c)*arctanh(1/2*2^(1/2)*(-2
*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*cos(d*x+
c)+115*sin(d*x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2+80*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+230*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*cos(d*x+c)-32*cos(d*x+c)^
4+115*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*sin(d*x+c)-78*cos(d*x+c)^3+40*cos(d*x+c)^2+70*cos(d*x+c))*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d
*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [A]  time = 3.02879, size = 1624, normalized size = 9.33 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/64*(115*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)
/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 160*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a
)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*c
os(d*x + c) - a)/(cos(d*x + c) + 1)) - 4*(16*cos(d*x + c)^3 + 55*cos(d*x + c)^2 + 35*cos(d*x + c))*sqrt((a*cos
(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x +
c) + a^3*d), -1/32*(115*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 160*(cos(d*x + c)^3 + 3*cos(d
*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*s
in(d*x + c))) - 2*(16*cos(d*x + c)^3 + 55*cos(d*x + c)^2 + 35*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x
+ c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError